0%

Kubernetes 调度器和调度算法

简介

Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。听起来非常简单,但有很多要考虑的问题:

  • 公平:如何保证每个节点都能被分配资源
  • 资源高效利用:集群所有资源最大化被使用
  • 效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
  • 灵活:允许用户根据自己的需求控制调度的逻辑

Sheduler 是作为单独的程序运行的,启动之后会一直坚挺 API Server,获取 PodSpec.NodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上

调度过程

调度分为几个部分:首先是过滤掉不满足条件的节点,这个过程称为 predicate;然后对通过的节点按照优先级排序,这个是 priority;最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误

Predicate 有一系列的算法可以使用:

  • PodFitsResources:节点上剩余的资源是否大于 pod 请求的资源
  • PodFitsHost:如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配
  • PodFitsHostPorts:节点上已经使用的 port 是否和 pod 申请的 port 冲突
  • PodSelectorMatches:过滤掉和 pod 指定的 label 不匹配的节点
  • NoDiskConflict:已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读

如果在 predicate 过程中没有合适的节点,pod 会一直在 pending 状态,不断重试调度,直到有节点满足条件。经过这个步骤,如果有多个节点满足条件,就继续 priorities 过程: 按照优先级大小对节点排序

优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。这些优先级选项包括:

  • LeastRequestedPriority:通过计算 CPU 和 Memory 的使用率来决定权重,使用率越低权重越高。换句话说,这个优先级指标倾向于资源使用比例更低的节点
  • BalancedResourceAllocation:节点上 CPU 和 Memory 使用率越接近,权重越高。这个应该和上面的一起使用,不应该单独使用
  • ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高

通过算法对所有的优先级项目和权重进行计算,得出最终的结果

自定义调度器

除了 kubernetes 自带的调度器,你也可以编写自己的调度器。通过 spec:schedulername 参数指定调度器的名字,可以为 pod 选择某个调度器进行调度。比如下面的 pod 选择 my-scheduler 进行调度,而不是默认的 default-scheduler

1
2
3
4
5
6
7
8
9
10
11
apiVersion: v1
kind: Pod
metadata:
name: annotation-second-scheduler
labels:
name: multischeduler-example
spec:
schedulername: my-scheduler
containers:
- name: pod-with-second-annotation-container
image: gcr.io/google_containers/pause:2.0

节点亲和性

pod.spec.nodeAffinity

  • preferredDuringSchedulingIgnoredDuringExecution:软策略
  • requiredDuringSchedulingIgnoredDuringExecution:硬策略

requiredDuringSchedulingIgnoredDuringExecution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
apiVersion: v1
kind: Pod
metadata:
name: affinity
labels:
app: node-affinity-pod
spec:
containers:
- name: with-node-affinity
image: hub.atguigu.com/library/myapp:v1
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: NotIn
values:
- k8s-node02

preferredDuringSchedulingIgnoredDuringExecution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
apiVersion: v1
kind: Pod
metadata:
name: affinity
labels:
app: node-affinity-pod
spec:
containers:
- name: with-node-affinity
image: hub.atguigu.com/library/myapp:v1
affinity:
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: source
operator: In
values:
- qikqiak

合体

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
apiVersion: v1
kind: Pod
metadata:
name: affinity
labels:
app: node-affinity-pod
spec:
containers:
- name: with-node-affinity
image: hub.atguigu.com/library/myapp:v1
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: NotIn
values:
- k8s-node02
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: source
operator: In
values:
- qikqiak

键值运算关系

  • In:label 的值在某个列表中
  • NotIn:label 的值不在某个列表中
  • Gt:label 的值大于某个值
  • Lt:label 的值小于某个值
  • Exists:某个 label 存在
  • DoesNotExist:某个 label 不存在

Pod 亲和性

pod.spec.affinity.podAffinity/podAntiAffinity

  • preferredDuringSchedulingIgnoredDuringExecution:软策略
  • requiredDuringSchedulingIgnoredDuringExecution:硬策略
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
apiVersion: v1
kind: Pod
metadata:
name: pod-3
labels:
app: pod-3
spec:
containers:
- name: pod-3
image: hub.atguigu.com/library/myapp:v1
affinity:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- pod-1
topologyKey: kubernetes.io/hostname
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app
operator: In
values:
- pod-2
topologyKey: kubernetes.io/hostname

亲和性/反亲和性调度策略比较如下:

调度策略匹配标签操作符拓扑域支持调度目标
nodeAffinity主机In, NotIn, Exists, DoesNotExist, Gt, Lt指定主机
podAffinityPODIn, NotIn, Exists, DoesNotExistPOD与指定POD同一拓扑域
podAnitAffinityPODIn, NotIn, Exists, DoesNotExistPOD与指定POD不在同一拓扑域

Taint 和 Toleration

节点亲和性,是 pod 的一种属性(偏好或硬性要求),它使 pod 被吸引到一类特定的节点。Taint 则相反,它使 节点 能够 排斥 一类特定的 pod

Taint 和 toleration 相互配合,可以用来避免 pod 被分配到不合适的节点上。每个节点上都可以应用一个或多个 taint ,这表示对于那些不能容忍这些 taint 的 pod,是不会被该节点接受的。如果将 toleration 应用于 pod 上,则表示这些 pod 可以(但不要求)被调度到具有匹配 taint 的节点上

污点(Taint)

Ⅰ、 污点 ( Taint ) 的组成

使用 kubectl taint 命令可以给某个 Node 节点设置污点,Node 被设置上污点之后就和 Pod 之间存在了一种相斥的关系,可以让 Node 拒绝 Pod 的调度执行,甚至将 Node 已经存在的 Pod 驱逐出去

每个污点的组成如下:

1
key=value:effect

每个污点有一个 key 和 value 作为污点的标签,其中 value 可以为空,effect 描述污点的作用。当前 taint effect 支持如下三个选项:

  • NoSchedule:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上
  • PreferNoSchedule:表示 k8s 将尽量避免将 Pod 调度到具有该污点的 Node 上
  • NoExecute:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上,同时会将 Node 上已经存在的 Pod 驱逐出去

Ⅱ、污点的设置、查看和去除

1
2
3
4
5
6
7
8
# 设置污点
kubectl taint nodes node1 key1=value1:NoSchedule

# 节点说明中,查找 Taints 字段
kubectl describe pod pod-name

# 去除污点
kubectl taint nodes node1 key1:NoSchedule-

容忍(Tolerations)

设置了污点的 Node 将根据 taint 的 effect:NoSchedule、PreferNoSchedule、NoExecute 和 Pod 之间产生互斥的关系,Pod 将在一定程度上不会被调度到 Node 上。 但我们可以在 Pod 上设置容忍 ( Toleration ) ,意思是设置了容忍的 Pod 将可以容忍污点的存在,可以被调度到存在污点的 Node 上

pod.spec.tolerations

1
2
3
4
5
6
7
8
9
10
11
12
13
tolerations:
- key: "key1"
operator: "Equal"
value: "value1"
effect: "NoSchedule"
tolerationSeconds: 3600
- key: "key1"
operator: "Equal"
value: "value1"
effect: "NoExecute"
- key: "key2"
operator: "Exists"
effect: "NoSchedule"
  • 其中 key, vaule, effect 要与 Node 上设置的 taint 保持一致
  • operator 的值为 Exists 将会忽略 value 值
  • tolerationSeconds 用于描述当 Pod 需要被驱逐时可以在 Pod 上继续保留运行的时间

Ⅰ、当不指定 key 值时,表示容忍所有的污点 key:

1
2
tolerations:
- operator: "Exists"

Ⅱ、当不指定 effect 值时,表示容忍所有的污点作用

1
2
3
tolerations:
- key: "key"
operator: "Exists"

Ⅲ、有多个 Master 存在时,防止资源浪费,可以如下设置

1
kubectl taint nodes Node-Name node-role.kubernetes.io/master=:PreferNoSchedule

指定调度节点

Ⅰ、Pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: myweb
spec:
replicas: 7
template:
metadata:
labels:
app: myweb
spec:
nodeName: k8s-node01
containers:
- name: myweb
image: hub.atguigu.com/library/myapp:v1
ports:
- containerPort: 80

Ⅱ、Pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,而后调度 Pod 到目标节点,该匹配规则属于强制约束

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: myweb
spec:
replicas: 2
template:
metadata:
labels:
app: myweb
spec:
nodeSelector:
type: backEndNode1
containers:
- name: myweb
image: harbor/tomcat:8.5-jre8
ports:
- containerPort: 80
这是打赏的地方...

本文标题:Kubernetes 调度器和调度算法

文章作者:Mr.Sun

发布时间:2020年04月26日 - 11:16:17

最后更新:2020年06月15日 - 09:25:18

原始链接:http://www.blog.sun-iot.xyz/posts/79a774b1

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

---------Thanks for your attention---------